Estimates for the Hill operator, II

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Institute for Mathematical Physics Inverse Problem and the Trace Formula for the Hill Operator, Ii Inverse Problem and the Trace Formula for the Hill Operator, Ii

Consider the Hill operator T = ?d 2 =dx 2 + q(x) on L 2 (R); where q 2 L 2 (0; 1) is a 1-periodic real potential and R 1 0 q(x)dx = 0: The spectrum of T is absolutely continuous and consists of intervals separated by gaps n = (a ? n ; a

متن کامل

The Uniform Estimates for the Hill

Let G n = (A ? n ; A + n); n 1; be gaps and let n = A ? n?1 ; A + n ] be spectral bands of the Hill operator T = ?d 2 =dx 2 + V (x) in L 2 (R), where V is a 1-periodic real potential from L 2 (0; 1). Let the gap length L n = jG n j; h n be a height of the corresponding slit in the quasimomentum domain and let n = 2 (2n ? 1) ? j n j > 0 be the band reduction.

متن کامل

The Second Order Estimates for the Hill Operatore

Let H be the Hill operator and let G n = (A ? n ; A + n) and M n ; n 1; be the corresponding gaps and the eeective masses for the Hill operator. Denote by F(E) the Lyapunov function for the Hill operator. Let n 2 A ? n ; A + n ] be such that F 0 (n) = 0 and h n 0 be the solution of the equation cosh h n = (?1) n F(n): We prove some identities for the eeective masses M n : Then we nd "second ord...

متن کامل

Weighted Estimates for the Averaging Integral Operator

Let 1 < p ≤ q < +∞ and let v, w be weights on (0,+∞) satisfying: (?) v(x)xis equivalent to a non-decreasing function on (0,+∞) for some ρ ≥ 0; [w(x)x] ≈ [v(x)x] for all x ∈ (0,+∞). We prove that if the averaging operator (Af)(x) := 1 x R x 0 f(t) dt, x ∈ (0,+∞), is bounded from the weighted Lebesgue space Lp((0,+∞); v) into the weighted Lebesgue space Lq((0,+∞);w), then there exists ε0 ∈ (0, p−...

متن کامل

A priori estimates for the Hill and Dirac operators

Consider the Hill operator Ty = −y′′ + q′(t)y in L2(R), where q ∈ L2(0, 1) is a 1periodic real potential. The spectrum of T is is absolutely continuous and consists of bands separated by gaps γn, n > 1 with length |γn| > 0. We obtain a priori estimates of the gap lengths, effective masses, action variables for the KDV. For example, if μn are the effective masses associated with the gap γn = (λ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2006

ISSN: 0022-0396

DOI: 10.1016/j.jde.2005.04.017